GIF89a=( �' 7IAXKgNgYvYx\%wh&h}t�h%�s%x�}9�R��&�0%� (�.��5�SD��&�a)�x5��;ͣ*ȡ&ղ)ׯ7׵<ѻ4�3�H֧KͯT��Y�aq��q��F� !� ' !� NETSCAPE2.0 , =( ��pH,�Ȥr�l:xШtJ�Z�جv��z��xL.:��z�n���|N�����~�������& !�0`9R�}��"�"a:S�~x��������g���E�������R���E����B�� ��ȸ��D���"�Ů� �H��L��D٫D�B�����D���T���H �G��A R�ڐ |�� ٭&��E8�S�kG�A�px�a��� R2XB��E8I���6X�:vT)�~��q�賥��"F~%x� � 4#Z�0O|-4Bs�X:= Q� Sal��yXJ`GȦ|s h��K3l7�B|�$'7Jީܪ0!��D�n=�P� ����0`�R�lj����v>���5 �.69�ϸd�����nlv�9��f{���Pbx �l5}�p� ��� �3a���I�O����!ܾ���i��9��#��)p�a ޽ �{�)vm��%D~ 6f��s}Œ�D�W E�`!� �&L8x� �ܝ{)x`X/>�}m��R�*|`D�=�_ ^�5 !_&'a�O�7�c��`DCx`�¥�9�Y�F���`?��"� �n@`�} lď��@4>�d S �v�xN��"@~d��=�g�s~G��� ���ud &p8Q�)ƫlXD����A~H�ySun�j���k*D�LH�] ��C"J��Xb~ʪwSt}6K,��q�S:9ت:���l�@�`�� �.۬�t9�S�[:��=`9N����{¿�A !R�:���6��x�0�_ �;������^���#����!����U���;0L1�����p% A��U̬ݵ��%�S��!���~`�G���� ���=4�np�3���������u�u�ٮ|%2�I��r�#0��J``8�@S@5� ���^`8E�]�.�S���7 � �0�j S�D� z���i�S�����!���l��w9*�D�I�nEX��� &A�Go�Qf��F��;���}�J����F5��Q|���X��T��y���]� o ��C=��:���PB@ D׽S�(>�C�x}`��xJЬ�۠��p+eE0`�}`A �/NE�� �9@��� H�7�!%B0`�l*��!8 2�%� �:�1�0E��ux%nP1�!�C)�P81l�ɸF#Ƭ{����B0>�� �b�`��O3��()yRpb��E.ZD8�H@% �Rx+%���c� ���f��b�d�`F�"8�XH"��-�|1�6iI, 2�$+](A*j� QT�o0.�U�`�R�}`�SN����yae�����b��o~ S)�y�@��3 �tT�0�&�+~L�f"�-|�~��>!�v��~�\Q1)}@�}h#aP72�"�$ !� " , =( &7IAXG]KgNgYvYxR"k\%w]'}h}t�h%�g+�s%r.m3ax3�x�}9��&��+�!7�0%� (�.�SD��&��;�"&ײ)׻4��6�K� �@pH,�Ȥr�l:xШtJ�Z�جv��z��xL.:��z�n���|N�����~�������& !�0`9R�}��"�"a:S�~x��������g �� E �� �������E �´��C���ǶR��D��"Ʒ�ʱH��M��GڬD�B����D��T����G���C�C� l&�~:'�tU�6ɹ#��)�'�.6�&��Ȼ K(8p0N�?!�2"��NIJX>R��OM '��2�*x�>#n� �@<[:�I�f ��T���Cdb��[�}E�5MBo��@�`@��tW-3 �x�B���jI�&E�9[T&$��ﯧ&"s��ȳ����dc�UUρ#���ldj?����`\}���u|3'�R]�6 �S#�!�FKL�*N E���`$�:e�YD�q�.�촁�s \-�jA 9�����-��M[�x(�s��x�|���p��}k�T�DpE@W� ��]k`1� ���Yb ��0l��*n0��"~zBd�~u�7�0Bl��0-�x~|U�U0 �h�*HS�|��e"#"?vp�i`e6^�+q��`m8 #V�� ��VS|`��"m"сSn|@:U���~`pb�G�ED����2F�I�? >�x� R� ��%~jx��<�a�9ij�2�D��&: Z`�]w���:�6��B�7eFJ|�ҧ�,���FǮcS�ʶ+B�,�ܺN���>PAD�HD��~���n��}�#�� Q��S���2�X�{�k�lQ�2�����w�|2� h9��G�,m���3��6-��E�L��I�³*K���q�`DwV�QXS��peS��� qܧTS����R�u �<�a�*At�lmE� � ��N[P1�ۦ��$��@`��Dpy�yXvCAy�B`}D� 0QwG#� �a[^�� $���Ǧ{L�"[��K�g�;�S~��GX.�goT.��ư��x���?1z��x~:�g�|�L� ��S`��0S]P�^p F<""�?!,�!N4&P� ����:T�@h�9%t��:�-~�I<`�9p I&.)^ 40D#p@�j4�ج:�01��rܼF2oW�#Z ;$Q q  �K��Nl#29 !F@�Bh�ᏬL!XF�LHKh�.�hE&J�G��<"WN!�����Y@� >R~19J"�2,/ &.GXB%�R�9B6�W]���W�I�$��9�RE8Y� ��"�A5�Q.axB�&ة�J�! �t)K%tS-�JF b�NMxL��)�R��"���6O!TH�H� 0 !� ) , =( &AXKgNgYvYxR"k\%wh&h}h%�g+�s%r.x3�x�}9��&��+�R,�!7�0%� (�.��5��&�a)��;�"&ף*Ȳ)ׯ7׻4�3��6�H֧KͻH�T��Y��q��h� ��pH,�Ȥr�l:xШtJ�Z�جv��z��xL.:��z�n���|N�����~�������& !�0`9R�}��"�"a:S�~x��������g �� E$����� � ����$E$��"��D� � ������R��C��� E ��H�M��G�D� �B��ϾD��a��`1r��Ӑ�� �o~�zU!L�C'�yW�UGt����ll�0���uG�)A�s[��x� �xO%��X2�  P�n:R/��aHae+�Dm?# ǣ6�8�J�x�Di�M���j���5oQ7�- <! *�l��R2r/a!l)d� A"�E���� &� ;��c �%����b��pe~C"B���H�eF2��`8qb�t_`ur`e� w�u3��Pv�h""�`�Íx�LĹ��3� �~ֺ�:���MDfJ� �۵�W�%�S�X �؁)�@��:E��w�u�Sxb8y\m�zS��Zb�E�L��w!y(>�"w�=�|��s�d �C�W)H�cC$�L �7r.�\{)@�`@ �X�$PD `aaG:���O�72E�amn]�"Rc�x�R� &dR8`g��i�xLR!�P &d����T���i�|�_ � Qi�#�`g:��:noM� :V �)p����W&a=�e�k� j���1߲s�x�W�jal|0��B0�, \j۴:6���C ��W��|��9���zĸV {�;��n��V�m�I��.��PN� ����C��+��By�ѾHŸ:��� 7�Y�FTk�SaoaY$D�S���29R�kt� ��f� ��:��Sp�3�I��DZ� �9���g��u�*3)O��[_hv ,���Et x�BH� �[��64M@�S�M7d�l�ܶ5-��U܍��z�R3Ԭ3~ ��P��5�g: ���kN�&0�j4���#{��3S�2�K�'ợl���2K{� {۶?~m𸧠�I�nE�='����^���_�=��~�#O���'���o..�Y�n��CSO��a��K��o,���b�����{�C�� "�{�K ��w��Ozdը�:$ ���v�] A#� ���a�z)Rx׿ƥ�d``�w-�y�f�K!����|��P��=�`�(f��'Pa ��BJa%��f�%`�}F����6>��`G"�}�=�!o`�^FP�ةQ�C���`(�}\�ݮ ��$<��n@dĠE#��U�I�!� #l��9`k���'Rr��Z�NB�MF �[�+9���-�wj���8�r� ,V�h"�|�S=�G_��"E� 0i*%̲��da0mVk�):;&6p>�jK ��# �D�:�c?:R Ӭf��I-�"�<�="��7�3S��c2RW ,�8(T"P0F¡Jh�" ; 403WebShell
403Webshell
Server IP : 173.249.157.85  /  Your IP : 13.59.111.209
Web Server : Apache
System : Linux server.frogzhost.com 3.10.0-1127.19.1.el7.x86_64 #1 SMP Tue Aug 25 17:23:54 UTC 2020 x86_64
User : econtech ( 1005)
PHP Version : 7.3.33
Disable Function : NONE
MySQL : OFF  |  cURL : OFF  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : ON  |  Pkexec : ON
Directory :  /lib64/python2.7/Demo/classes/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /lib64/python2.7/Demo/classes/Complex.py
# Complex numbers
# ---------------

# [Now that Python has a complex data type built-in, this is not very
# useful, but it's still a nice example class]

# This module represents complex numbers as instances of the class Complex.
# A Complex instance z has two data attribues, z.re (the real part) and z.im
# (the imaginary part).  In fact, z.re and z.im can have any value -- all
# arithmetic operators work regardless of the type of z.re and z.im (as long
# as they support numerical operations).
#
# The following functions exist (Complex is actually a class):
# Complex([re [,im]) -> creates a complex number from a real and an imaginary part
# IsComplex(z) -> true iff z is a complex number (== has .re and .im attributes)
# ToComplex(z) -> a complex number equal to z; z itself if IsComplex(z) is true
#                 if z is a tuple(re, im) it will also be converted
# PolarToComplex([r [,phi [,fullcircle]]]) ->
#       the complex number z for which r == z.radius() and phi == z.angle(fullcircle)
#       (r and phi default to 0)
# exp(z) -> returns the complex exponential of z. Equivalent to pow(math.e,z).
#
# Complex numbers have the following methods:
# z.abs() -> absolute value of z
# z.radius() == z.abs()
# z.angle([fullcircle]) -> angle from positive X axis; fullcircle gives units
# z.phi([fullcircle]) == z.angle(fullcircle)
#
# These standard functions and unary operators accept complex arguments:
# abs(z)
# -z
# +z
# not z
# repr(z) == `z`
# str(z)
# hash(z) -> a combination of hash(z.re) and hash(z.im) such that if z.im is zero
#            the result equals hash(z.re)
# Note that hex(z) and oct(z) are not defined.
#
# These conversions accept complex arguments only if their imaginary part is zero:
# int(z)
# long(z)
# float(z)
#
# The following operators accept two complex numbers, or one complex number
# and one real number (int, long or float):
# z1 + z2
# z1 - z2
# z1 * z2
# z1 / z2
# pow(z1, z2)
# cmp(z1, z2)
# Note that z1 % z2 and divmod(z1, z2) are not defined,
# nor are shift and mask operations.
#
# The standard module math does not support complex numbers.
# The cmath modules should be used instead.
#
# Idea:
# add a class Polar(r, phi) and mixed-mode arithmetic which
# chooses the most appropriate type for the result:
# Complex for +,-,cmp
# Polar   for *,/,pow

import math
import sys

twopi = math.pi*2.0
halfpi = math.pi/2.0

def IsComplex(obj):
    return hasattr(obj, 're') and hasattr(obj, 'im')

def ToComplex(obj):
    if IsComplex(obj):
        return obj
    elif isinstance(obj, tuple):
        return Complex(*obj)
    else:
        return Complex(obj)

def PolarToComplex(r = 0, phi = 0, fullcircle = twopi):
    phi = phi * (twopi / fullcircle)
    return Complex(math.cos(phi)*r, math.sin(phi)*r)

def Re(obj):
    if IsComplex(obj):
        return obj.re
    return obj

def Im(obj):
    if IsComplex(obj):
        return obj.im
    return 0

class Complex:

    def __init__(self, re=0, im=0):
        _re = 0
        _im = 0
        if IsComplex(re):
            _re = re.re
            _im = re.im
        else:
            _re = re
        if IsComplex(im):
            _re = _re - im.im
            _im = _im + im.re
        else:
            _im = _im + im
        # this class is immutable, so setting self.re directly is
        # not possible.
        self.__dict__['re'] = _re
        self.__dict__['im'] = _im

    def __setattr__(self, name, value):
        raise TypeError, 'Complex numbers are immutable'

    def __hash__(self):
        if not self.im:
            return hash(self.re)
        return hash((self.re, self.im))

    def __repr__(self):
        if not self.im:
            return 'Complex(%r)' % (self.re,)
        else:
            return 'Complex(%r, %r)' % (self.re, self.im)

    def __str__(self):
        if not self.im:
            return repr(self.re)
        else:
            return 'Complex(%r, %r)' % (self.re, self.im)

    def __neg__(self):
        return Complex(-self.re, -self.im)

    def __pos__(self):
        return self

    def __abs__(self):
        return math.hypot(self.re, self.im)

    def __int__(self):
        if self.im:
            raise ValueError, "can't convert Complex with nonzero im to int"
        return int(self.re)

    def __long__(self):
        if self.im:
            raise ValueError, "can't convert Complex with nonzero im to long"
        return long(self.re)

    def __float__(self):
        if self.im:
            raise ValueError, "can't convert Complex with nonzero im to float"
        return float(self.re)

    def __cmp__(self, other):
        other = ToComplex(other)
        return cmp((self.re, self.im), (other.re, other.im))

    def __rcmp__(self, other):
        other = ToComplex(other)
        return cmp(other, self)

    def __nonzero__(self):
        return not (self.re == self.im == 0)

    abs = radius = __abs__

    def angle(self, fullcircle = twopi):
        return (fullcircle/twopi) * ((halfpi - math.atan2(self.re, self.im)) % twopi)

    phi = angle

    def __add__(self, other):
        other = ToComplex(other)
        return Complex(self.re + other.re, self.im + other.im)

    __radd__ = __add__

    def __sub__(self, other):
        other = ToComplex(other)
        return Complex(self.re - other.re, self.im - other.im)

    def __rsub__(self, other):
        other = ToComplex(other)
        return other - self

    def __mul__(self, other):
        other = ToComplex(other)
        return Complex(self.re*other.re - self.im*other.im,
                       self.re*other.im + self.im*other.re)

    __rmul__ = __mul__

    def __div__(self, other):
        other = ToComplex(other)
        d = float(other.re*other.re + other.im*other.im)
        if not d: raise ZeroDivisionError, 'Complex division'
        return Complex((self.re*other.re + self.im*other.im) / d,
                       (self.im*other.re - self.re*other.im) / d)

    def __rdiv__(self, other):
        other = ToComplex(other)
        return other / self

    def __pow__(self, n, z=None):
        if z is not None:
            raise TypeError, 'Complex does not support ternary pow()'
        if IsComplex(n):
            if n.im:
                if self.im: raise TypeError, 'Complex to the Complex power'
                else: return exp(math.log(self.re)*n)
            n = n.re
        r = pow(self.abs(), n)
        phi = n*self.angle()
        return Complex(math.cos(phi)*r, math.sin(phi)*r)

    def __rpow__(self, base):
        base = ToComplex(base)
        return pow(base, self)

def exp(z):
    r = math.exp(z.re)
    return Complex(math.cos(z.im)*r,math.sin(z.im)*r)


def checkop(expr, a, b, value, fuzz = 1e-6):
    print '       ', a, 'and', b,
    try:
        result = eval(expr)
    except:
        result = sys.exc_type
    print '->', result
    if isinstance(result, str) or isinstance(value, str):
        ok = (result == value)
    else:
        ok = abs(result - value) <= fuzz
    if not ok:
        print '!!\t!!\t!! should be', value, 'diff', abs(result - value)

def test():
    print 'test constructors'
    constructor_test = (
        # "expect" is an array [re,im] "got" the Complex.
            ( (0,0), Complex() ),
            ( (0,0), Complex() ),
            ( (1,0), Complex(1) ),
            ( (0,1), Complex(0,1) ),
            ( (1,2), Complex(Complex(1,2)) ),
            ( (1,3), Complex(Complex(1,2),1) ),
            ( (0,0), Complex(0,Complex(0,0)) ),
            ( (3,4), Complex(3,Complex(4)) ),
            ( (-1,3), Complex(1,Complex(3,2)) ),
            ( (-7,6), Complex(Complex(1,2),Complex(4,8)) ) )
    cnt = [0,0]
    for t in constructor_test:
        cnt[0] += 1
        if ((t[0][0]!=t[1].re)or(t[0][1]!=t[1].im)):
            print "        expected", t[0], "got", t[1]
            cnt[1] += 1
    print "  ", cnt[1], "of", cnt[0], "tests failed"
    # test operators
    testsuite = {
            'a+b': [
                    (1, 10, 11),
                    (1, Complex(0,10), Complex(1,10)),
                    (Complex(0,10), 1, Complex(1,10)),
                    (Complex(0,10), Complex(1), Complex(1,10)),
                    (Complex(1), Complex(0,10), Complex(1,10)),
            ],
            'a-b': [
                    (1, 10, -9),
                    (1, Complex(0,10), Complex(1,-10)),
                    (Complex(0,10), 1, Complex(-1,10)),
                    (Complex(0,10), Complex(1), Complex(-1,10)),
                    (Complex(1), Complex(0,10), Complex(1,-10)),
            ],
            'a*b': [
                    (1, 10, 10),
                    (1, Complex(0,10), Complex(0, 10)),
                    (Complex(0,10), 1, Complex(0,10)),
                    (Complex(0,10), Complex(1), Complex(0,10)),
                    (Complex(1), Complex(0,10), Complex(0,10)),
            ],
            'a/b': [
                    (1., 10, 0.1),
                    (1, Complex(0,10), Complex(0, -0.1)),
                    (Complex(0, 10), 1, Complex(0, 10)),
                    (Complex(0, 10), Complex(1), Complex(0, 10)),
                    (Complex(1), Complex(0,10), Complex(0, -0.1)),
            ],
            'pow(a,b)': [
                    (1, 10, 1),
                    (1, Complex(0,10), 1),
                    (Complex(0,10), 1, Complex(0,10)),
                    (Complex(0,10), Complex(1), Complex(0,10)),
                    (Complex(1), Complex(0,10), 1),
                    (2, Complex(4,0), 16),
            ],
            'cmp(a,b)': [
                    (1, 10, -1),
                    (1, Complex(0,10), 1),
                    (Complex(0,10), 1, -1),
                    (Complex(0,10), Complex(1), -1),
                    (Complex(1), Complex(0,10), 1),
            ],
    }
    for expr in sorted(testsuite):
        print expr + ':'
        t = (expr,)
        for item in testsuite[expr]:
            checkop(*(t+item))


if __name__ == '__main__':
    test()

Youez - 2016 - github.com/yon3zu
LinuXploit