GIF89a=( �' 7IAXKgNgYvYx\%wh&h}t�h%�s%x�}9�R��&�0%� (�.��5�SD��&�a)�x5��;ͣ*ȡ&ղ)ׯ7׵<ѻ4�3�H֧KͯT��Y�aq��q��F� !� ' !� NETSCAPE2.0 , =( ��pH,�Ȥr�l:xШtJ�Z�جv��z��xL.:��z�n���|N�����~�������& !�0`9R�}��"�"a:S�~x��������g���E�������R���E����B�� ��ȸ��D���"�Ů� �H��L��D٫D�B�����D���T���H �G��A R�ڐ |�� ٭&��E8�S�kG�A�px�a��� R2XB��E8I���6X�:vT)�~��q�賥��"F~%x� � 4#Z�0O|-4Bs�X:= Q� Sal��yXJ`GȦ|s h��K3l7�B|�$'7Jީܪ0!��D�n=�P� ����0`�R�lj����v>���5 �.69�ϸd�����nlv�9��f{���Pbx �l5}�p� ��� �3a���I�O����!ܾ���i��9��#��)p�a ޽ �{�)vm��%D~ 6f��s}Œ�D�W E�`!� �&L8x� �ܝ{)x`X/>�}m��R�*|`D�=�_ ^�5 !_&'a�O�7�c��`DCx`�¥�9�Y�F���`?��"� �n@`�} lď��@4>�d S �v�xN��"@~d��=�g�s~G��� ���ud &p8Q�)ƫlXD����A~H�ySun�j���k*D�LH�] ��C"J��Xb~ʪwSt}6K,��q�S:9ت:���l�@�`�� �.۬�t9�S�[:��=`9N����{¿�A !R�:���6��x�0�_ �;������^���#����!����U���;0L1�����p% A��U̬ݵ��%�S��!���~`�G���� ���=4�np�3���������u�u�ٮ|%2�I��r�#0��J``8�@S@5� ���^`8E�]�.�S���7 � �0�j S�D� z���i�S�����!���l��w9*�D�I�nEX��� &A�Go�Qf��F��;���}�J����F5��Q|���X��T��y���]� o ��C=��:���PB@ D׽S�(>�C�x}`��xJЬ�۠��p+eE0`�}`A �/NE�� �9@��� H�7�!%B0`�l*��!8 2�%� �:�1�0E��ux%nP1�!�C)�P81l�ɸF#Ƭ{����B0>�� �b�`��O3��()yRpb��E.ZD8�H@% �Rx+%���c� ���f��b�d�`F�"8�XH"��-�|1�6iI, 2�$+](A*j� QT�o0.�U�`�R�}`�SN����yae�����b��o~ S)�y�@��3 �tT�0�&�+~L�f"�-|�~��>!�v��~�\Q1)}@�}h#aP72�"�$ !� " , =( &7IAXG]KgNgYvYxR"k\%w]'}h}t�h%�g+�s%r.m3ax3�x�}9��&��+�!7�0%� (�.�SD��&��;�"&ײ)׻4��6�K� �@pH,�Ȥr�l:xШtJ�Z�جv��z��xL.:��z�n���|N�����~�������& !�0`9R�}��"�"a:S�~x��������g �� E �� �������E �´��C���ǶR��D��"Ʒ�ʱH��M��GڬD�B����D��T����G���C�C� l&�~:'�tU�6ɹ#��)�'�.6�&��Ȼ K(8p0N�?!�2"��NIJX>R��OM '��2�*x�>#n� �@<[:�I�f ��T���Cdb��[�}E�5MBo��@�`@��tW-3 �x�B���jI�&E�9[T&$��ﯧ&"s��ȳ����dc�UUρ#���ldj?����`\}���u|3'�R]�6 �S#�!�FKL�*N E���`$�:e�YD�q�.�촁�s \-�jA 9�����-��M[�x(�s��x�|���p��}k�T�DpE@W� ��]k`1� ���Yb ��0l��*n0��"~zBd�~u�7�0Bl��0-�x~|U�U0 �h�*HS�|��e"#"?vp�i`e6^�+q��`m8 #V�� ��VS|`��"m"сSn|@:U���~`pb�G�ED����2F�I�? >�x� R� ��%~jx��<�a�9ij�2�D��&: Z`�]w���:�6��B�7eFJ|�ҧ�,���FǮcS�ʶ+B�,�ܺN���>PAD�HD��~���n��}�#�� Q��S���2�X�{�k�lQ�2�����w�|2� h9��G�,m���3��6-��E�L��I�³*K���q�`DwV�QXS��peS��� qܧTS����R�u �<�a�*At�lmE� � ��N[P1�ۦ��$��@`��Dpy�yXvCAy�B`}D� 0QwG#� �a[^�� $���Ǧ{L�"[��K�g�;�S~��GX.�goT.��ư��x���?1z��x~:�g�|�L� ��S`��0S]P�^p F<""�?!,�!N4&P� ����:T�@h�9%t��:�-~�I<`�9p I&.)^ 40D#p@�j4�ج:�01��rܼF2oW�#Z ;$Q q  �K��Nl#29 !F@�Bh�ᏬL!XF�LHKh�.�hE&J�G��<"WN!�����Y@� >R~19J"�2,/ &.GXB%�R�9B6�W]���W�I�$��9�RE8Y� ��"�A5�Q.axB�&ة�J�! �t)K%tS-�JF b�NMxL��)�R��"���6O!TH�H� 0 !� ) , =( &AXKgNgYvYxR"k\%wh&h}h%�g+�s%r.x3�x�}9��&��+�R,�!7�0%� (�.��5��&�a)��;�"&ף*Ȳ)ׯ7׻4�3��6�H֧KͻH�T��Y��q��h� ��pH,�Ȥr�l:xШtJ�Z�جv��z��xL.:��z�n���|N�����~�������& !�0`9R�}��"�"a:S�~x��������g �� E$����� � ����$E$��"��D� � ������R��C��� E ��H�M��G�D� �B��ϾD��a��`1r��Ӑ�� �o~�zU!L�C'�yW�UGt����ll�0���uG�)A�s[��x� �xO%��X2�  P�n:R/��aHae+�Dm?# ǣ6�8�J�x�Di�M���j���5oQ7�- <! *�l��R2r/a!l)d� A"�E���� &� ;��c �%����b��pe~C"B���H�eF2��`8qb�t_`ur`e� w�u3��Pv�h""�`�Íx�LĹ��3� �~ֺ�:���MDfJ� �۵�W�%�S�X �؁)�@��:E��w�u�Sxb8y\m�zS��Zb�E�L��w!y(>�"w�=�|��s�d �C�W)H�cC$�L �7r.�\{)@�`@ �X�$PD `aaG:���O�72E�amn]�"Rc�x�R� &dR8`g��i�xLR!�P &d����T���i�|�_ � Qi�#�`g:��:noM� :V �)p����W&a=�e�k� j���1߲s�x�W�jal|0��B0�, \j۴:6���C ��W��|��9���zĸV {�;��n��V�m�I��.��PN� ����C��+��By�ѾHŸ:��� 7�Y�FTk�SaoaY$D�S���29R�kt� ��f� ��:��Sp�3�I��DZ� �9���g��u�*3)O��[_hv ,���Et x�BH� �[��64M@�S�M7d�l�ܶ5-��U܍��z�R3Ԭ3~ ��P��5�g: ���kN�&0�j4���#{��3S�2�K�'ợl���2K{� {۶?~m𸧠�I�nE�='����^���_�=��~�#O���'���o..�Y�n��CSO��a��K��o,���b�����{�C�� "�{�K ��w��Ozdը�:$ ���v�] A#� ���a�z)Rx׿ƥ�d``�w-�y�f�K!����|��P��=�`�(f��'Pa ��BJa%��f�%`�}F����6>��`G"�}�=�!o`�^FP�ةQ�C���`(�}\�ݮ ��$<��n@dĠE#��U�I�!� #l��9`k���'Rr��Z�NB�MF �[�+9���-�wj���8�r� ,V�h"�|�S=�G_��"E� 0i*%̲��da0mVk�):;&6p>�jK ��# �D�:�c?:R Ӭf��I-�"�<�="��7�3S��c2RW ,�8(T"P0F¡Jh�" ; 403WebShell
403Webshell
Server IP : 173.249.157.85  /  Your IP : 18.118.207.174
Web Server : Apache
System : Linux server.frogzhost.com 3.10.0-1127.19.1.el7.x86_64 #1 SMP Tue Aug 25 17:23:54 UTC 2020 x86_64
User : econtech ( 1005)
PHP Version : 7.3.33
Disable Function : NONE
MySQL : OFF  |  cURL : OFF  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : ON  |  Pkexec : ON
Directory :  /lib64/ocaml/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /lib64/ocaml/set.mli
(**************************************************************************)
(*                                                                        *)
(*                                 OCaml                                  *)
(*                                                                        *)
(*             Xavier Leroy, projet Cristal, INRIA Rocquencourt           *)
(*                                                                        *)
(*   Copyright 1996 Institut National de Recherche en Informatique et     *)
(*     en Automatique.                                                    *)
(*                                                                        *)
(*   All rights reserved.  This file is distributed under the terms of    *)
(*   the GNU Lesser General Public License version 2.1, with the          *)
(*   special exception on linking described in the file LICENSE.          *)
(*                                                                        *)
(**************************************************************************)

(** Sets over ordered types.

   This module implements the set data structure, given a total ordering
   function over the set elements. All operations over sets
   are purely applicative (no side-effects).
   The implementation uses balanced binary trees, and is therefore
   reasonably efficient: insertion and membership take time
   logarithmic in the size of the set, for instance.

   The {!Make} functor constructs implementations for any type, given a
   [compare] function.
   For instance:
   {[
     module IntPairs =
       struct
         type t = int * int
         let compare (x0,y0) (x1,y1) =
           match Pervasives.compare x0 x1 with
               0 -> Pervasives.compare y0 y1
             | c -> c
       end

     module PairsSet = Set.Make(IntPairs)

     let m = PairsSet.(empty |> add (2,3) |> add (5,7) |> add (11,13))
   ]}

   This creates a new module [PairsSet], with a new type [PairsSet.t]
   of sets of [int * int].
*)

module type OrderedType =
  sig
    type t
      (** The type of the set elements. *)

    val compare : t -> t -> int
      (** A total ordering function over the set elements.
          This is a two-argument function [f] such that
          [f e1 e2] is zero if the elements [e1] and [e2] are equal,
          [f e1 e2] is strictly negative if [e1] is smaller than [e2],
          and [f e1 e2] is strictly positive if [e1] is greater than [e2].
          Example: a suitable ordering function is the generic structural
          comparison function {!Pervasives.compare}. *)
  end
(** Input signature of the functor {!Set.Make}. *)

module type S =
  sig
    type elt
    (** The type of the set elements. *)

    type t
    (** The type of sets. *)

    val empty: t
    (** The empty set. *)

    val is_empty: t -> bool
    (** Test whether a set is empty or not. *)

    val mem: elt -> t -> bool
    (** [mem x s] tests whether [x] belongs to the set [s]. *)

    val add: elt -> t -> t
    (** [add x s] returns a set containing all elements of [s],
       plus [x]. If [x] was already in [s], [s] is returned unchanged
       (the result of the function is then physically equal to [s]).
       @before 4.03 Physical equality was not ensured. *)

    val singleton: elt -> t
    (** [singleton x] returns the one-element set containing only [x]. *)

    val remove: elt -> t -> t
    (** [remove x s] returns a set containing all elements of [s],
       except [x]. If [x] was not in [s], [s] is returned unchanged
       (the result of the function is then physically equal to [s]).
       @before 4.03 Physical equality was not ensured. *)

    val union: t -> t -> t
    (** Set union. *)

    val inter: t -> t -> t
    (** Set intersection. *)

    val diff: t -> t -> t
    (** Set difference. *)

    val compare: t -> t -> int
    (** Total ordering between sets. Can be used as the ordering function
       for doing sets of sets. *)

    val equal: t -> t -> bool
    (** [equal s1 s2] tests whether the sets [s1] and [s2] are
       equal, that is, contain equal elements. *)

    val subset: t -> t -> bool
    (** [subset s1 s2] tests whether the set [s1] is a subset of
       the set [s2]. *)

    val iter: (elt -> unit) -> t -> unit
    (** [iter f s] applies [f] in turn to all elements of [s].
       The elements of [s] are presented to [f] in increasing order
       with respect to the ordering over the type of the elements. *)

    val map: (elt -> elt) -> t -> t
    (** [map f s] is the set whose elements are [f a0],[f a1]... [f
        aN], where [a0],[a1]...[aN] are the elements of [s].

       The elements are passed to [f] in increasing order
       with respect to the ordering over the type of the elements.

       If no element of [s] is changed by [f], [s] is returned
       unchanged. (If each output of [f] is physically equal to its
       input, the returned set is physically equal to [s].)
       @since 4.04.0 *)

    val fold: (elt -> 'a -> 'a) -> t -> 'a -> 'a
    (** [fold f s a] computes [(f xN ... (f x2 (f x1 a))...)],
       where [x1 ... xN] are the elements of [s], in increasing order. *)

    val for_all: (elt -> bool) -> t -> bool
    (** [for_all p s] checks if all elements of the set
       satisfy the predicate [p]. *)

    val exists: (elt -> bool) -> t -> bool
    (** [exists p s] checks if at least one element of
       the set satisfies the predicate [p]. *)

    val filter: (elt -> bool) -> t -> t
    (** [filter p s] returns the set of all elements in [s]
       that satisfy predicate [p]. If [p] satisfies every element in [s],
       [s] is returned unchanged (the result of the function is then
       physically equal to [s]).
       @before 4.03 Physical equality was not ensured.*)

    val partition: (elt -> bool) -> t -> t * t
    (** [partition p s] returns a pair of sets [(s1, s2)], where
       [s1] is the set of all the elements of [s] that satisfy the
       predicate [p], and [s2] is the set of all the elements of
       [s] that do not satisfy [p]. *)

    val cardinal: t -> int
    (** Return the number of elements of a set. *)

    val elements: t -> elt list
    (** Return the list of all elements of the given set.
       The returned list is sorted in increasing order with respect
       to the ordering [Ord.compare], where [Ord] is the argument
       given to {!Set.Make}. *)

    val min_elt: t -> elt
    (** Return the smallest element of the given set
       (with respect to the [Ord.compare] ordering), or raise
       [Not_found] if the set is empty. *)

    val min_elt_opt: t -> elt option
    (** Return the smallest element of the given set
       (with respect to the [Ord.compare] ordering), or [None]
       if the set is empty.
        @since 4.05
    *)

    val max_elt: t -> elt
    (** Same as {!Set.S.min_elt}, but returns the largest element of the
       given set. *)

    val max_elt_opt: t -> elt option
    (** Same as {!Set.S.min_elt_opt}, but returns the largest element of the
        given set.
        @since 4.05
    *)

    val choose: t -> elt
    (** Return one element of the given set, or raise [Not_found] if
       the set is empty. Which element is chosen is unspecified,
       but equal elements will be chosen for equal sets. *)

    val choose_opt: t -> elt option
    (** Return one element of the given set, or [None] if
        the set is empty. Which element is chosen is unspecified,
        but equal elements will be chosen for equal sets.
        @since 4.05
    *)

    val split: elt -> t -> t * bool * t
    (** [split x s] returns a triple [(l, present, r)], where
          [l] is the set of elements of [s] that are
          strictly less than [x];
          [r] is the set of elements of [s] that are
          strictly greater than [x];
          [present] is [false] if [s] contains no element equal to [x],
          or [true] if [s] contains an element equal to [x]. *)

    val find: elt -> t -> elt
    (** [find x s] returns the element of [s] equal to [x] (according
        to [Ord.compare]), or raise [Not_found] if no such element
        exists.
        @since 4.01.0 *)

    val find_opt: elt -> t -> elt option
    (** [find_opt x s] returns the element of [s] equal to [x] (according
        to [Ord.compare]), or [None] if no such element
        exists.
        @since 4.05 *)

    val find_first: (elt -> bool) -> t -> elt
    (** [find_first f s], where [f] is a monotonically increasing function,
       returns the lowest element [e] of [s] such that [f e],
       or raises [Not_found] if no such element exists.

       For example, [find_first (fun e -> Ord.compare e x >= 0) s] will return
       the first element [e] of [s] where [Ord.compare e x >= 0] (intuitively:
       [e >= x]), or raise [Not_found] if [x] is greater than any element of
       [s].

        @since 4.05
       *)

    val find_first_opt: (elt -> bool) -> t -> elt option
    (** [find_first_opt f s], where [f] is a monotonically increasing function,
       returns an option containing the lowest element [e] of [s] such that
       [f e], or [None] if no such element exists.
        @since 4.05
       *)

    val find_last: (elt -> bool) -> t -> elt
    (** [find_last f s], where [f] is a monotonically decreasing function,
       returns the highest element [e] of [s] such that [f e],
       or raises [Not_found] if no such element exists.
        @since 4.05
       *)

    val find_last_opt: (elt -> bool) -> t -> elt option
    (** [find_last_opt f s], where [f] is a monotonically decreasing function,
       returns an option containing the highest element [e] of [s] such that
       [f e], or [None] if no such element exists.
        @since 4.05
       *)

    val of_list: elt list -> t
    (** [of_list l] creates a set from a list of elements.
        This is usually more efficient than folding [add] over the list,
        except perhaps for lists with many duplicated elements.
        @since 4.02.0 *)
  end
(** Output signature of the functor {!Set.Make}. *)

module Make (Ord : OrderedType) : S with type elt = Ord.t
(** Functor building an implementation of the set structure
   given a totally ordered type. *)

Youez - 2016 - github.com/yon3zu
LinuXploit